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Soliton solutions in DWDM system is recovered in presence of four-wave mixing terms. The two laws of nonlinearity 
considered are Kerr law and parabolic law. Exact bright, dark and singular soliton solutions are retrieved by the aid of 
ansatz method. This integrability is achieved only with phase-matching condition for these components. 
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1. Introduction 

 

Optical solitons provide cutting edge technology in 

fiber communications [1-20]. DWDM (Dense 

Wavelength Division Multiplexing) technology is 

engineered in the field of nonlinear fiber optics to 

achieve ultimate performance enhancement. It is 

imperative to address this technology further to provide 

bleeding edge results that is not only breathtaking but 

also provides an engineering marvel. This paper just 

exactly does that. Exact 1-soliton solution is obtained for 

DWDM systems that are studied in presence of four-

wave mixing (4WM) terms with Kerr and parabolic laws 

of nonlinearity. Bright, dark and singular soliton 

solutions are retrieved with phase-matching conditions. 

There are a few constraint conditions that are listed.  

These conditions, also known as integrability criteria, 

must hold for the soliton solutions to exist.  

The governing model is the nonlinear 

Schrödinger’s equation (NLSE).  In this paper, NLSE is 

considered with spatio-temporal dispersion (STD) in 

addition to group velocity dispersion (GVD). This 

additional form of dispersion serves as a well-posed 

model as proved during 2012 [6, 11]. The presence of 

STD can also reduce the effect of Internet bottleneck 

that is detrimental in fiber-optic communication system 

across trans-continental and trans-oceanic distances.  

The integration tool that is adopted in this paper is the 

ansatz method. 

 

 

2. The model 
 

The governing model is NLSE with GVD and STD. 

The two laws of nonlinearity that will be studied are 

Kerr law and parabolic law.  The study will now be split 

into the next couple of subsections where each of these laws 

will be considered in detail.  

 

 

2.1 Kerr law 

 

For Kerr law nonlinearity, DWDM model reads [12] 
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Here, Nl 1 . The first term in (1) on left hand side 

is the linear evolution term, while la represents the 

coefficient of GVD; lb  represents the STD. Then, lc  is the 

coefficient of self-phase modulation (SPM) while nl  are 

the coefficients of cross-phase modulation (XPM), while 

nl  accounts for 4WM. The independent variables are  x  

and t  that represents the spatial and temporal variables 

respectively. The dependent variable is ),()( txq l
 that 

represents soliton profile in every single channel for 

Nl 1 .  

 

 

 

 

 



Optical solitons in DWDM system with four-wave mixing                                                            15 

 
2.2 Parabolic law 

 
This law is alternatively known as the cubic-quintic 

nonlinearity and arises in the nonlinear interaction 

between Langmuir waves and electrons. It describes the 

nonlinear interaction between the high frequency 

Langmuir waves and the ion acoustic waves by 

pondermotive forces [8]. For parabolic law nonlinearity, 

DWDM, with 4WM, is modeled as [12]:  
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for Nl 1 . In (2), SPM terms are the 

coefficients of lc   and ld , while XPM coefficients are 

nl , nl  and nl . Also, the terms with nl , nl , 

nl , nl   are accounted for 4WM in parabolic law 

medium. 

 

 

3. Ansatz method 
 
This section will obtain exact bright dark and 

singular 1-soliton solutions to (1) and (2) by the ansatz 

approach. The special circumstance for which models 

(1) and (2) will be rendered integrable is the phase-

matching condition. Therefore, the phase for solitons in 

all channels must remain the same. The starting 

hypothesis is 
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l
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From the phase component,  represents the 

frequency that stays the same in all channels, while   

is the same wave number, while   is the phase constant 

that also stays the same in all channels. The amplitude part is 

),( txPl . The study will now be split into two sections.  

 

3.1 Kerr law 

 

Substituting the hypothesis (3) into (1) and splitting 

into real and imaginary parts leads to [12] 
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and 
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The imaginary part equation leads to the speed of the 

soliton that is given by 
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The speed of the soliton given by (6) remains valid for 

 

1lb                                       (7) 

 

This speed of the soliton stays the same irrespective of 

the type of nonlinearity that is being studied. The analysis of 

the real part equation will be conducted in the following 

three subsections that discuss bright, dark and singular 

solitons. 

 

 

3.1.1 Bright solitons 

 
For bright solitons, the starting hypothesis is given by 

[12-15] 
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where  

 

)( vtxB                                   (9) 

 

and lA  being the amplitude of each soliton with B  being 

their width. The value of the unknown exponent lp  will 

naturally emerge during the course of derivation of the 

soliton solution. Substituting (8) into (4) leads to 

 



16                                                  M. Savescu, A. A. Alshaery, E. M. Hilal, A. H.  Bhrawy, Qin Zhou, A. Biswas 

 

 

0sech)(

sech

sech)()1(

)(

22

22

12

222






















n

l

l

p

n

N

ln

nlnl

p

ll

p

llll

lllll

A

Ac

vbaBpp

abBpvba

        (10) 

 

By balancing principle, one recovers 

 

1 nl pp                                  (11) 

for Nl 1 . Next, setting the coefficients of the 

linearly independent functions to zero yields 
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Now, equating the speed of the solitons from real 

and imaginary parts given by (6) and (12) leads to the 

relation between the width and amplitude of the solitons 
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which imposes the constraint condition 

 

 
 

0
)1(2

)(2

22

2222

22




































ll

N

ln nnlnlllll

N

ln nnlll

ba

AAcab

AAc

  (15) 

 

Thus, bright 1-soliton solution in DWDM system is 

given by 
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where all parameter relations are discussed above.  

 

 

3.1.2 Dark solitons 

 

For dark soliton solutions, the starting point is the 

hypothesis given by [12-15] 
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where lA  and B  are free parameters. Substituting this 

hypothesis into (4), the real part equation simplifies to 
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Balancing principle leads to (11). Similarly, the 

coefficients of the linearly independent functions give 
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and finally the relation between the free parameters is: 
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which imposes the constraint condition 
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Thus, dark 1-soliton solution in DWDM system is 

given by 
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with the parameter dependences as discussed above.  
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3.1.3 Singular solitons 

 

For singular solitons, one starts with the hypothesis 

[12-15] 
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where lA  and B  are all free parameters while lp  are 

unknown exponents whose value will be determined. 

Substituting (24) into (4) yields  
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From balancing principle, one recovers the same 

value of  lp  for Nl 1  as given by (11). Again 

from the coefficients of the linearly independent 

functions, 
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Next, equating the speed of the solitons from real 

and imaginary parts given by (6) and (26) leads to the 

relation between free parameters of the solitons 
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which imposes the constraint condition 

 

 

 
 

0
)1(2

)(2

22

2222

22




































ll

N

ln nnlnlllll

N

ln nnlll

ba

AAcab

AAc

     (29) 

 

Thus, singular 1-soliton solution in DWDM system 

is given by 

 

)(

)( )]([csch),(

 



txi

p

l

l

e

vtxBAtxq l

         (30) 

where the parameter relations are all given.  

 

 

3.2 Parabolic law 

 

In this case, substituting (3) into (2), leads to the same 

imaginary part as given by (5). Again, the speed will be the 

same as (6). The real part equation however from (2) is  
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It needs to be noted that, for parabolic law nonlinear 

medium, ansatz approach is only able to retrieve bright and 

singular solitons that are detailed in subsequent subsections. 

Thus discussions on dark solitons are not included.  

 

 

3.2.1 Bright solitons 

 

For bright soliton solution, with parabolic law, the 

starting hypothesis is given by [8, 12-17, 20] 
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with unknown exponent lp  and   is defined in (9). 

Substituting (32) into (31), simplifies to 
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Now, balancing principle yields 
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for  Nl 1 . Next, setting the coefficients of the 

linearly independent functions to zero yields 
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Equating the speed v of the solitons from (35) and 

(36) gives 
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Finally, equating the speed of the soliton between 

(6) and (36) gives the width of the solitons in the 

channels as 
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as long as 
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Finally, the bright soliton solution in DWDM system 

with parabolic law nonlinearity is given by 
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where the parameters are defined in this subsection along 

with necessary restrictions that are needed for these solitons 

to exist.  

 

 

3.2.2 Singular solitons 

 

For singular solitons, the starting hypothesis is given by 

[12-17] 
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with unknown exponent lp  and   is defined in (9). 

Substituting (44) into (31), simplifies to 
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Now, balancing principle yields (34). Similarly, as in 

the case of bright solitons, coefficients of linearly 

independent functions yield (35) and 
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Equating the speed v of the solitons from (35) and 

(46) leads to 
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where Q  and R  are defined in (39) and (40). This 

relation for D  introduces the restriction 
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Finally, equating the speed of the soliton between 

(6) and (46) gives the free parameter B  as 
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with the same constraint as given by (42).  Finally, 

singular 1-soliton solution in DWDM system with 

parabolic law nonlinearity is given by 
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with the definition of the parameters in place.  

 

 

4. Conclusions 
 

This paper obtained 1-soliton solution to DWDM 

system that is considered with Kerr law and parabolic 

law nonlinearity. There are several constraint conditions 

that are listed. These constraints restrict the choice of 

free parameters that are available. For Kerr law medium, 

it is the bright, dark and singular 1-soliton solution that 

is retrieved; on the other hand for parabolic law medium, 

it is only bright and singular soliton solutions that are 

retrievable. 

The results of this paper carry a lot of future 

prospects. Later additional integration tools will be 

employed to recover these soliton solutions. Some of these 

integration architectures are Lie symmetry analysis, G’/G-

expansion scheme, Kudryashov’s method and several others. 

This is just a tip of the iceberg. That plethora of results will 

be reported later.  
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